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1 Introduction

Last lecture we spent a lot of time introducing the Knill-Laflamme conditions, which charac-
terize when a quantum error correcting code exactly corrects for a set of errors. Today, in
the first half of the lecture, we continue and see several very interesting consequences of the
Knill-Laflamme conditions.

2 More on the Knill-Laflamme Conditions

To begin, we restate two equivalent versions of the conditions from last time:

Theorem 2.1 (Knill-Laflamme conditions). A code C corrects a linear space of errors E if
and only if either:

1. With {|x⟩} an orthonormal basis of C, and E1, . . . , Em a linear (but not necessarily
orthonormal) basis of E, for all |x⟩ and |y⟩ and 1 ≤ i, j ≤ m,

⟨x|E†
iEj |y⟩ = δx,y ·Oi,j,

where Oi,j is a number which depends on the indices i and j, but not on the codewords
|x⟩ and |y⟩.

2. ⟨ψ|E†
iEj |ψ⟩ = Oi,j for all |ψ⟩ ∈ C, for all 1 ≤ i, j ≤ m.

The first condition tells us that we can figure out if E is a correctable set of errors by
looking at all inner products between vectors of the form {Ei |x⟩}. Recall from last time that
these vectors, for different |x⟩ and |y⟩, must be orthogonal, since otherwise there is no way
to map them back to orthogonal vectors. Moreover, the inner products should only depend
on the errors Ei and Ej, and not on the codewords. Last time we saw several interpretations
for this, but here are two of them as a reminder:

The first interpretation: if we have a recovery algorithm that takes Ei |x⟩ back to |x⟩,
then that algorithm is going to produce the codeword as well as a syndrome. However, the
syndrome should record information only about the error, and not the codeword, since oth-
erwise we are losing information about the state in the syndrome. If, however, the syndrome
depends does not depend on the state, then we obtain the Knill-Laflamme conditions.

1



The other interpretation we saw is that if the errors arise from the state interacting with
the environment, then the environment’s state should be independent of the codeword. If
it isn’t, it has taken away information about the codeword, making it impossible to recover
the codeword perfectly. The environment’s state being independent of the codeword again
implies the Knill-Laflamme conditions.

We can use the Knill-Laflamme conditions to finally define the central object that we are
going to care about, which is: what does it mean for a code to correct errors that only affect
a small number of qubits?

Fact 2.2. A code C ⊂ Hphysical = (C2)⊗n corrects all weight-t errors if and only if the
Knill-Laflamme conditions hold for E the set of all weight-t errors.

According to the second form of the Knill-Laflamme conditions above, all we need is that
⟨ψ|E†

1E2 |ψ⟩ = Oi,j for all weight-t errors E1, E2 (above the conditions were for a basis of
errors, but it is equivalent to have the conditions hold for arbitrary errors).

What is the right basis for the set of weight-t errors? Recall: {I,X, Y, Z} forms a linear
basis for all 2× 2 matrices. Equivalently, they form a basis for all single-qubit matrices, so
any single qubit error can always be decomposed into Pauli matrices. We used that to see
that the weight-1 elements of {I,X, Y, Z}⊗n form a basis for all weight-1 errors on n qubits.
As a reminder, the weight-1 Paulis are those that have I for n− 1 (all but one) of its tensor
factors, and a single factor of a Pauli matrix (which may also be the identity). Similarly,
weight-t Paulis form a basis for all weight-t errors.

We can now rewrite our Knill-Laflamme conditions as:

⟨ψ|P †
1P2 |ψ⟩ = OP1,P2 , for all weight-t Paulis P1, P2.

The product of two weight-t Paulis is a Pauli with weight at most 2t. As an example, if
n = 4 and P1 = I ⊗ X ⊗ Z ⊗ I and P2 = Y ⊗ Z ⊗ I ⊗ I (both weight-2 Paulis), we get
Y ⊗ Y ⊗Z ⊗ I (up to a phase). Here, the product is 3, which is less than 2t, but we can get
up to 2t if P1 and P2 are supported on different factors. So, we can equivalently state the
Knill-Laflamme conditions as

⟨ψ|P |ψ⟩ = OP , for all weight-2t Paulis P.

Finally, we make a nice observation: the weight-2t Paulis form a basis for the set of all
weight-2t errors. So equivalently,

⟨ψ|E |ψ⟩ = OE, for all weight-2t errors E.

We now have four equivalent ways of viewing what it means to be a code that corrects all
weight-t errors.

Such a code is said to have distance 2t+ 1. That is, a code has distance 2t+ 1 if it can
correct errors of weight at most t.

For some classical intuition: if we have the five-bit repetition code, with codewords 00000
and 11111, we would define the distance of this code to be the number of bitflips needed to
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get from one codeword to the other (the Hamming distance between the codewords). As a
result, we would say this code has distance 5, because to get from five 0s to five 1s, we need
to flip five bits. If we have an error on the first codeword that flips the first two bits, so
that we have 11000, we can always correct that error, because the majority of the bits are
still 0, and so we know that if at most two bits have been flipped we must have come from
00000. So, classically, if we have a code of distance 2t+ 1, we can always correct errors up
to weight-t. We are defining distance for quantum error correcting codes in analogy to this.

We might hope that the distance d is also the minimal weight error taking one codeword
to another codeword. Though this is true for codes we will see later in the course, Professor
Wright believes this is not generally true.

2.1 Consequences of the Knill-Laflamme Conditions

2.1.1 Local Indistinguishability

Fact 2.3. Suppose C ⊂ (C2)⊗n has distance 2t + 1. Let |ψ1⟩ , |ψ2⟩ ∈ C, and let S ⊂ [n] of
size 2t. Then

tr[n]\S (|ψ1⟩ ⟨ψ1|) = tr[n]\S (|ψ2⟩ ⟨ψ2|) .

That is, for any fixed subset of qubits S, so long as |S| is one less than the distance, the
reduced state of any codeword on S is identical. We cannot distinguish between any two
states in our code by looking at subsets of size at most 2t. We must look at at least 2t+ 1
qubits.

Proof. What does it mean for these two states to be unequal? There would exist a mea-
surement that distinguishes the states, that is, there’s some measurement we can perform
which has outcomes that occur with different probabilities. To show the two reduced states
are equal, we will pick an arbitrary measurement, and prove it acts identically for any code
states |ψ1⟩ , |ψ2⟩.

Let Π be a 2t-qubit projection matrix. Then the probability we get outcome Π is

trS(Π · tr[n]\S(|ψ1⟩ ⟨ψ1|) = tr
(
ΠS ⊗ I[n]\S · |ψ1⟩ ⟨ψ1|

)
= ⟨ψ1|ΠS ⊗ I[n]\S |ψ1⟩ .

Since ΠS ⊗ I[n]\S acts only on S, it is a weight-2t error, and so the Knill-Laflamme conditions
tell us that ⟨ψ1|ΠS ⊗ I[n]\S |ψ1⟩ is independent of |ψ1⟩. In particular, we would get the same
thing if we replaced |ψ1⟩ with |ψ2⟩.

There is no classical analog of this result. For example, we can distinguish between the
five-bit repetition code’s codewords 00000 and 11111 by looking at only a single bit.

As an example of local indistinguishability, consider the Shor code. The basis states of
the codespace are:

|0⟩L = (|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩) ,
|1⟩L = (|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩) .
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We saw that the Shor code has distance 3. For example, we can correct any single qubit
error, but Z1Z4Z7 takes |0⟩L → |1⟩L, so we cannot correct this error. If we look at the subset
S = {1, 2}, and trace out [n] \ S, we get

1

2
|00⟩ ⟨00|+ 1

2
|11⟩ ⟨11| ,

whether we start with |0⟩L or |1⟩L. The same is true if we look at any two qubits in the same
block of three. If we look instead at a subset with two qubits, each from different blocks, for
example, the subset S = {1, 4}, we get instead the state(

1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1|

)⊗2

,

independent of starting codeword.

2.1.2 Located Errors

Let’s consider a code state |ψ⟩ on n qubits. In general, some error will occur on this state,
but we won’t know ahead of time which error, and in particular, we don’t know where that
error will act. In a located error, we are told exactly which qubits have been affected by
noise, so we know where to focus our error recovery. Intuitively, this should make our job
easier, since we know more about the error that has occurred, and the hope is that this will
allow us to correct more errors. Indeed, there is the following fact:

Fact 2.4. A distance 2t+ 1 QECC can correct any weight-2t located error.

If we knew where the errors would occur before encoding, we could just not use those
qubits. What makes this interesting is that we do not which qubits the errors will act on
before encoding.

As an example, consider the classical five-bit repetition code. If, after an error has occured,
we have the string 00001, but know the error has occured on the first four bits, then we know
for sure the original codeword was 11111, since the last bit is correct. In this example, we
see that we correct errors acting on up to four bits, which is one less than the distance. Fact
2.4 claims that the same holds for a quantum error correcting code.

Proof. How do we prove a QECC corrects a set of errors? By showing the Knill-Laflamme
conditions are satisfied for those errors.

So, let S ⊂ [n] be the location of the errors, with |S| ≤ 2t. The set of errors we want
to correct is E = {weight 2t errors on S}. We want to look at inner products of the form
⟨ψ|E†

1E2 |ψ⟩ for E1, E2 ∈ E . Since E1 and E2 act on the same 2t qubits S, their product still
only acts on the qubits in S, and so E = E†

1E2 has weight 2t, so that the Knill-Laflamme
conditions (for the original QECC, with non-located errors) tell us

⟨ψ|E†
1E2 |ψ⟩ = ⟨ψ|E |ψ⟩ = OE.

Therefore, the Knill-Laflamme conditions (for E) are satisfied.
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2.1.3 Degeneracy

Definition 2.5. A code C correcting errors E is degenerate if there exist distinct errors
E1, E2 ∈ E such that E1 |ψ⟩ = E2 |ψ⟩ for all |ψ⟩ ∈ C.

For example, the Shor nine-qubit code is degenerate: Z1 |ψ⟩ = Z2 |ψ⟩ for all states |ψ⟩ in
the code.

One thing we can look as is the difference (E1 −E2) |ψ⟩ = 0. Since E is a linear subspace,
E1 −E2 is an error in E as well, and so we have a nonzero error E ∈ E so that E |ψ⟩ = 0 for
all codewords |ψ⟩. For example, in the Shor code, Z1 − Z2 maps all codewords to zero.

We can give an alternative characterization of when a code is degenerate in terms of the
Knill-Laflamme conditions:

Fact 2.6. Let E1, . . . , Em be a basis for E . Set Oa,b = ⟨ψ|E†
aEb |ψ⟩ for some |ψ⟩ ∈ C (it doesn’t

matter which |ψ⟩ we use, by the Knill-Laflamme conditions). Then C is a non-degenerate
code if and only if Oa,b has full rank.

This gives us a nice linear algebraic way to detect whether our code is degenerate or not.

Proof. First we prove that if C is degenerate, then Oa,b does not have full rank. Let E ∈ E
be a nonzero error so that E |ψ⟩ = 0. Expand E as E =

∑
i αiEi, and extract the vector

of coefficients |α⟩ =
∑

i αi |i⟩. Now we will look at the quantity ⟨i|O |α⟩ for a generic basis
state |i⟩. Our goal is to show that this inner product is zero, which implies that O |α⟩ = 0,
and therefore O does not have full rank, since |α⟩ is an eigenvector with eigenvalue 0. We
have

⟨i|O |α⟩ = ⟨i|O

(∑
j

αj |j⟩

)
=
∑
j

αjOi,j

=
∑
j

αj ⟨ψ|E†
iEj |ψ⟩

= ⟨ψ|E†
i

(∑
j

αjEj

)
|ψ⟩

= ⟨ψ|E†
iE |ψ⟩

= 0.

Now we show the converse. If Oa,b does not have full rank, then there is a zero eigenvector
|α⟩ =

∑
j αj |j⟩, and we claim E =

∑
i αiEi is a nonzero error so that E |ψ⟩ = 0. We have,

using the above computation,

⟨ψ|E†
iE |ψ⟩ = ⟨i|O |α⟩ = 0.
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Since this holds for all i, we can take a linear combination

0 =
∑
i

α†
i ⟨ψ|E

†
iE |ψ⟩ = ⟨ψ|E†E |ψ⟩ = ||E |ψ⟩ ||2.

So E |ψ⟩ = 0. Since Oa,b = ⟨ψ|E†
iEj |ψ⟩ does not depend on which code state |ψ⟩ we use, we

have E |ψ⟩ = 0 for all |ψ⟩ ∈ C.

Later on we will see some bounds on quantum error correcting codes, and one of these
will only apply to non-degenerate codes. However, many of the codes that we will see
are degenerate (e.g. stabilizer codes). Degeneracy can be a positive though, since some
combinations of errors will have no effect on code states, and therefore automatically resilient
to some types of noise. Sometimes this can be used to the code’s advantage.

3 Classical Linear Codes

Now we move on to several lectures on how to actually construct quantum error correcting
codes. So far, we have been discussing QECCs abstractly, with only the Shor code as an
example. We really need a systematic way to design QECCs, but this seems difficult because
a QECC is just a subspace, and there are so many subspaces. Which ones should we try?

In the mid-90s, people figured out a systematic way to design QECCs, that makes it so
we are able to use a lot of our intuition from classical error correction.

To motivate all of this, we need some definitions from classical error correction, specifically
from linear error correcting codes. After a brief introduction to linear codes, we will use our
intuition from this to build new quantum codes.

Definition 3.1. A classical code is a subset C ⊂ {0, 1}n. It is linear code if C forms a
subspace: for all x, y ∈ C, x+ y ∈ C, where x+ y is bitwise addition modulo 2:

x+ y =
(
x1 + y2 (mod 2), . . . , xn + yn (mod 2)

)
∈ C.

If C is a linear code, then we can take a basis for C, {g1, . . . , gk}, and write C =
span{g1, . . . , gk} = {b1g1 + · · · + bkgk | b1, . . . , bk ∈ {0, 1}}. The dimension of the code is
dim(C) = k, and we can think of the code as encoding k bits (the bi’s) into n bits.

As a running example, consider the three-bit repetition code: C = {000, 111}. This is a
linear code, and with g1 = 111, {g1} is a basis.

Definition 3.2. The generator matrix is the matrix

G =


g1
g2
...
gk

 ,
where g1, . . . , gk is a basis of C.
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Let b = (b1, . . . , bk) ∈ {0, 1}k, then b ·GT = b1 · g1 + · · ·+ bk · gk ∈ C.
The standard way to check if some bitstring x is in the code is by using parity checks.

For example, consider the three-bit repetition code again. To check if x is in the code, we
check if pairs of adjacent bits are equal: if every pair is equal, then all the bits are equal,
and the bitstring is in the code. We can accomplish this by measuring the parity of different
subsets of bits of x.

For this example, we would check the parity of pairs of adjacent bits. We can describe
our check with a bitstring h1 = 110, which means that we check the parity of the sum of
the bits where we have 1s. Alternatively, we take the dot product of the bitstring h1 with x:
h1 · x1 = x1 + x2. This is zero if and only if x1 and x2 are the same, so for any bitstring x in
the code, we must have h1 · x = 0. We also want to check if the second and third bits are
the same, and h2 = 011 is the corresponding parity check. We could also check if the first
and last bit are equal with the parity check h3 = 101, but this is redundant given h1 and h2.

Definition 3.3. A parity check is a string h ∈ {0, 1}n such that h · c = 0 (mod 2) for all
codewords x ∈ C.

Note that if h · x = 0 and h · y = 0, then h · (x + y) = 0, so that parity checks behave
nicely with linear codes. This would not have been the case if we had asked for parity checks
of 1.
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